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Abstract 

Recent advancements in wearable technology and 

machine learning have led to an increased research 

interest in the use of peripheral physiological signals to 

recognize emotion granularity. In healthcare, the ability to 

create an algorithm that classifies emotion content can aid 

in the development of treatment protocols for 

psychopathology and chronic disease. The non-invasive 

nature of peripheral physiological signals however is 

usually of low quality due to low sampling rates. As a 

result, single-mode physiological signal-based emotion 

recognition shows low performance. In this research, we 

explore the use of multi-modal wearable-based emotion 

recognition using the K-EmoCon dataset. Physiological 

signals in addition to self-reported arousal and valence 

records were analyzed with a battery of datamining 

algorithms including decision trees, support vector 

machines, k-nearest neighbors, and ensembles. 

Performance was evaluated using accuracy, true positive 

rate, and area under the receiver operating characteristic 

curve. Results support the assumption with 83% average  

accuracy when using an ensemble bagged tree algorithm 

compared to single heart rate-based emotion accuracy of 

56.1%. Emotion granularity can be identified by wearables 

with multi-modal signal recording capabilities that 

improve diagnostics and possibly treatment efficacy. 

 

1. Introduction 

Understanding emotion in quantifiable terms rather than 

the traditional qualitative manner used by psychologists 

has been one of the aims of wearable, personalized 

technologies research as part of the IoT [1]. Though 

humans usually construe emotions as body language, they 

are essentially the result of neuronal and hormonal activity 

that translates into changes in diverse physiological signals 

such as cardiac rhythm, peripheral temperature, 

electrodermal activity and respiratory rhythm. Emotions 

and the associated physiological systems are modulated by 

autonomic nervous system (ANS) as well as higher cortical 

centres establishing specific physiological networks. 

Through hypothalamic-brainstem connections, the 

cerebral cortex and limbic system affect ANS activities 

linked with emotional reactions. Vasodilation of the blood 

vessels, fainting, cold chills, and a rapid heart rate are 

examples of physiological changes associated with 

emotional reactions [2].   

Data mining has become an integral part of medicine 

including exploration of large clinical datasets as well as 

features associated with diverse physiological signals [3]. 

Hierarchical processing has further led to improvements in 

prediction accuracy for clinical decision making and 

emotion classification [4]. The current research applied 

hierarchical datamining methods to predict emotions as 

arousal and valence during a debate using the K-EmoCon 

dataset. 

 

2. Experimental Method 

2.1. Data 

The K-EmoCon dataset chosen to conduct this research 

contains comprehensive annotations of continuous 

emotions during a naturalistic debate. Specifically, the 

context for data collection, was a semi-structured, turn-

taking debate between male and female students (age 

range: 19 to 36) about a social topic with randomly 

assigned partners, allowing for gathering emotions similar 

to those which may naturally develop throughout the 

course of the day. The setting's formality and spontaneity 

however, forced individuals to manage their emotions in a 

socially acceptable manner [5]. The data used for the 

emotion classification was blood volume pulse (BVP), 

electrodermal activity (EDA), heart rate (HR), and skin 

temperature (SKT) signals collected using the Empatica 

E4 Wristband alongside the first-hand self-reported 

annotations of arousal and valence. 

2.2. Emotion Annotations 

All emotional states are represented by two fundamental 

neurophysiological attributes, one connected to valence 

and the other to arousal, according to Russel's circumplex 

Computing in Cardiology 2022; Vol 49 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2022.328



model of affect, with each emotion may be represented as 

a linear combination of these two dimensions [6]. 

Therefore, it is quite important to consider emotions in this 

two-dimensional space in any emotion recognition 

application. Arousal and valence are each considered as 

having either low or high states where 1 and 2 labels are 

considered low and 3, 4, and 5 labels are considered high. 

The intersection of the 2-class arousal and the 2-class 

valence model was considered, which creates four 

quadrants into which emotions are classified (Figure 1). It 

is important to note that the correct identification of 

emotions in the HALV and the LALV quadrants is 

essential as that is where the emotions most associated with 

stress and illness occur such as sadness, depression, and 

anxiety. 

2.3. Signal Pre-processing  

    Minimal pre-processing was applied to the 

physiological signals from the K-EmoCon recordings prior 

to input to the machine learning models. Resampling to 1 

Hz was applied to the 64 Hz BVP and the 1 Hz HR signals 

to match the EDA and SKT signals using MATLAB retime 

function with a linear interpolation method and all signals 

were synchronized. After resampling, the four signals are 

stacked to form an array corresponding to a 5-second 

segment matching the annotation frequency.  In addition, 

the four signals had varying means and range of values 

which could slow down the learning and convergence of 

the models as variables with larger ranges will dominate 

over those with small ranges leading to biased results. To 

overcome this issue, the training set mean, and standard 

deviation were used to standardize the training and testing 

sets (Figure 2). The minimal pre-processing approach 

applied here was carried out to investigate the possibility 

of using such models in real-time emotion recognition 

applications, which require low computing costs.  

2.4. Classification Models and Platform 

The experimental setup included the implementation of 

machine-learning algorithms in MATLAB. Decision trees 

(fine, medium, and coarse), support vector machines 

(linear, quadratic, cubic, fine Gaussian, medium Gaussian, 

and coarse Gaussian), k-nearest neighbours (fine, medium, 

coarse, cosine, cubic, and weighted), and ensembles 

(boosted trees, bagged trees, subspace KNN, and 

RUSBoosted Trees) classifiers were trained using the pre-

set hyperparameters as a starting point coupled with a 5-

fold cross-validation scheme. Signals were first used 

individually as predictors then combinations of two signals 

and then three as indicated by principal component 

analysis (PCA). Finally, a multi-modal approach was 

tested by using all four signals.  

Rather than relying on the measure of conventional 

accuracy alone, which in class imbalance problems as 

found with the current dataset, varies greatly [7], other 

measures were also considered. True Positive Rate (TPR) 

was used to assess how correctly each model classified 

instances in each class since the performance of the model 

in low occurring classes is of interest. The area under the 

receiver operating characteristic curve (AUC) was used to 

compare the different machine learning models, with a 

value of 0.5 indicating no discrimination, 0.7–0.8 good, 

0.8–0.9 excellent, and higher than 0.9 exceptional 

discrimination [8]. 

3. Results 

 From the accuracy results in Figure 3 and average TPR 

and AUC values in Table 1, using only BVP signals 

resulted in an average accuracy of 44.59% for all models 

tested. Maximum average TPR was 28.15% when 

Ensemble RUSBoosted Trees was used. AUC values for 

all the models tested averaged at 0.51 accuracy.  

 On the other hand, EDA signals resulted in a 48.84% 

Figure 2. A 5-minute excerpt of BVP, EDA, HR, and 

SKT signals for one of the participants after 

synchronization and standardization along with 

corresponding emotion annotations. 

Figure 1. The intersection of low/high arousal with 

low/high valence creates four quadrants: High 

Arousal/High Valence (HAHV), High Arousal/Low 

Valence (HALV), Low Arousal/Low Valence (LALV), and 

Low Arousal/High Valence (LAHV). 
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average accuracy with the highest accuracy being 60.6% 

when using a medium tree algorithm. Average TPR was 

33.35% with maximum average TPR being 52.8% when 

Ensemble RUSBoosted Trees was used. AUC values 

ranged between 0.45 and 0.74 with an average of 0.62.  

 Using HR signals gave an average accuracy of 46.65%, 

with the highest accuracy at 56.1% when using a coarse 

tree algorithm. As with BVP and EDA, the highest average 

TPR was achieved using Ensemble RUSBoosted Trees and 

maximum average AUC was 0.54.  

 SKT gave an average accuracy of 51.14%, with the 

highest accuracy at 59.9% when using a coarse tree 

algorithm. Consistently, the highest average TPR was 

found using Ensemble RUSBoosted Trees, which was also 

reflected in the corresponding average AUC value of 0.75. 

 PCA was used to find the percent variability explained 

by the principal components of the four signals. BVP and 

EDA signals together explained 68.13% of all variability 

while BVP, EDA, and HR together explained 99.99% of 

all variability.  

 The use of the combination of BVP and EDA signals as 

predictors gave an average accuracy of 51.43% for all the 

classification algorithms tested, with the highest accuracy 

at 60.4% when using a medium tree algorithm. Maximum 

average TPR and average AUC were 52.4% and 0.74, 

respectively, both using Ensemble RUSBoosted Trees. 

 For BVP, EDA, and HR together, the average accuracy 

for all the classification algorithms tested was 55.84%, 

with the highest accuracy at 83% when using an ensemble 

bagged trees algorithm. Maximum average TPR was 

58.05% using Ensemble RUSBoosted Trees while 

maximum AUC was 0.85 using ensemble bagged trees 

algorithm. 

 Using the four signals as predictors produced the best 

overall results. The ensemble bagged trees algorithm, in 

particular, was not only able to produce higher accuracy at 

83%, but it also discriminated between the four emotion 

classes. Specifically, the true positive rate for the LALV, 

HALV, LAHV, and HAHV classes was 62.2%, 59%, 

82.1%, and 90.5%, respectively.  

4. Discussion 

When using the BVP signal as the only predictor, all 

algorithms failed to display any discrimination between 

classes, indicating that on its own, the BVP signal was not 

enough to support emotion recognition. EDA did better in 

detecting the low occurring classes and in classification 

overall, with average AUC values of about 0.7 as opposed 

to 0.6 with BVP. Still, the discrimination between classes 

was not sufficient. The use of HR as the only predictor was 

similar to that of BVP in terms of not showing any 

discriminating abilities. The SKT signal did relatively well 

in detecting the LALV class, however, it came at the cost 

of loss of accuracy in detecting the other three classes. The 

combined use of BVP, EDA, HR, and SKT signals as 

predictors produced the best results. The ensemble bagged 

trees approach, not only had a high level of accuracy at 

83% that was in line with accuracies of recent wearable-

based emotion recognition studies [9], but also had a high 

level of discrimination when it came to class prediction. 

When fewer signals were employed, the ensemble 

RUSBoosted trees fared well in properly categorizing the 

low occurring class, but it became biased towards the other 

classes, which is why the overall accuracy was poor. 

5. Conclusion  

 Studies on wearable-based emotion recognition have 

progressed in search of an economic system that can be 

utilized for non-invasive long-term monitoring. The size 

and power constraints of the sensors used put limits on the 

qualities of individual signals, resulting in poor 

performance when used in emotion recognition models. In 

this research, a multi-modal approach was proposed to 

overcome the aforementioned issues, by utilizing BVP, 

EDA, HR, and SKT signals from the K-EmoCon dataset. 

 
Figure 3. Average Accuracy results for individual signal analysis when using the different machine learning algorithms. 
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The results support the use of multimodal signal analysis 

for detection of emotion granularity defined by valence and 

arousal. In addition, the minimum preprocessing proposed 

here was sufficient for obtaining highly accurate results 

that pave the way for routine clinical use.  The findings of 

this paper will be used as a basis for further testing into 

optimizing the hyperparameters of the models for better 

performance.  
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Table 1. Average TPR% and AUC results across all four classes when using the different machine learning algorithms. 

Classifier 
BVP EDA HR SKT 2 PCA 3 PCA 4 Signals 

TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC TPR AUC 

Fine Tree 24.18 0.51 37.18 0.72 28.90 0.55 36.68 0.72 36.70 0.70 44.63 0.76 51.80 0.81 

Medium Tree 24.90 0.53 35.95 0.68 28.35 0.54 35.45 0.67 35.88 0.67 36.38 0.68 37.73 0.73 

Coarse Tree 25.00 0.51 28.98 0.59 28.75 0.53 33.98 0.64 28.98 0.59 32.68 0.61 33.18 0.64 

Linear SVM 25.33 0.50 24.70 0.49 24.85 0.50 24.55 0.49 24.85 0.50 25.00 0.49 25.00 0.54 

Quadratic SVM 25.70 0.51 25.73 0.51 24.30 0.52 25.15 0.51 25.15 0.51 25.28 0.52 29.15 0.68 

Cubic SVM 25.53 0.51 24.90 0.50 26.80 0.50 23.00 0.49 25.13 0.51 26.28 0.54 34.95 0.69 

Fine Gaussian SVM 24.88 0.50 29.60 0.61 28.15 0.59 32.18 0.70 28.58 0.60 31.83 0.68 43.30 0.81 

Medium Gaussian SVM 24.98 0.50 28.08 0.57 25.65 0.57 29.30 0.66 24.95 0.58 27.38 0.62 31.28 0.73 

Coarse Gaussian SVM 25.00 0.52 25.00 0.59 25.00 0.53 25.00 0.57 25.00 0.56 25.00 0.60 25.00 0.66 

Fine KNN 12.23 0.50 37.45 0.59 28.20 0.52 39.90 0.60 33.95 0.57 39.75 0.60 54.58 0.70 

Medium KNN 24.78 0.50 47.37 0.72 27.83 0.57 40.08 0.74 30.43 0.63 34.10 0.67 44.20 0.79 

Coarse KNN 25.00 0.53 32.60 0.72 27.85 0.58 32.53 0.73 27.45 0.60 27.98 0.62 33.28 0.72 

Cosine KNN 25.45 0.51 22.13 0.45 23.60 0.48 22.40 0.44 27.28 0.54 29.73 0.63 39.98 0.73 

Cubic KNN 24.78 0.50 38.58 0.72 27.83 0.57 40.08 0.74 30.28 0.63 33.53 0.67 43.15 0.78 

Weighted KNN 25.00 0.51 38.18 0.64 28.40 0.54 40.50 0.66 33.33 0.63 38.43 0.68 52.70 0.81 

Ensemble Boosted Trees 24.70 0.53 35.68 0.73 28.75 0.58 35.05 0.72 35.58 0.72 36.00 0.76 39.10 0.80 

Ensemble Bagged Trees 24.80 0.50 31.35 0.65 28.30 0.54 41.33 0.69 39.05 0.69 57.63 0.85 73.45 0.94 

Ensemble Subspace KNN 24.75 0.50 37.43 0.59 28.20 0.52 39.60 0.60 26.58 0.56 41.60 0.68 53.35 0.84 

Ensemble RUSBoosted Trees 28.15 0.52 52.80 0.74 36.13 0.59 55.23 0.75 52.40 0.74 58.05 0.80 61.03 0.83 
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